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The question of the structure of systems of differential equations, which arise in certain problems of mechanics and allow of 
first integrals is discussed. 0 2003 Elsevier Science Ltd. All rights reserved. 

As is well known, the existence of first integrals in a system of differential equations makes a considerable 
impression on its form (see, for example, [l]). Thus [2], the existence linear system of a quadratic first 
integral, when natural conditions of non-degeneracy are satisfied, predetermines its Hamiltonian 
structure. The connection between the existence of first integrals in the system and the existence in it 
of a Hamiltonian or Poisson structure can also be traced in other examples (see, for example, [3]). This 
connection anticipates one of the approaches to the general problem, formulated previously in [4], of 
finding the Hamiltonian structure of systems of ordinary differential equations. 

1. EULER-TYPE EQUATIONS 

The special properties of Hamiltonian systems distinguish them from the general set of systems of 
differential equations. Hence, even information on the existence of a Hamiltonian structure, possibly 
without its explicit detection, is of considerable interest (see, for example, [5-91). It has been known 
even from Jacobi’s time that in certain cases it is possible to make progress in solving the problem of 
the existence of a Hamiltonian or Poisson structure for systems of ordinary differential equations with 
a sufficient number of first integrals. Thus, if an autonomous system of yz differential equations 

t = f(x), XE R” WI 

allows of y1- 1, in general, independent first integralsjl, j,, . . . , jn_l, it can be represented in the form 
(see, for example, [2, Chapter 111, [lo] and also [ll]) 

ii = a(x) 
a(xi> J,, J,, ..*T J"_ 1) 

dcx,, x2, ,..) n,) I i = 1,x . . . . n 11.2) 

where a(x) is a certain function. The region a(x) = 0 consists of fixed points. Hence, both it and the 
regions 

c- = {x: a(x) <O}, z+ = (x: a(x) >O} 

are invariant under the action of a phase flow, and in each of them, by changing the time dz = &a(x), 
system (1.2) can be converted to the form 

x; = 3(x, J,, J,, ...T J,_ 1) 
a<x,,x, )...) x,) ’ j= 172J...3n (1.3) 

The limitation of the phase flow of system (1.2) on the non-singular combined level of n -. 2 of these 
integrals, let us say, on the surface 

I= (x:J,=j,,J,=j, ,..., Jn_,=jn_i) (1.4) 
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is described, apart from the time change, by a system of Hamilton equations with one degree of freedom 
with Hamilton function J = J1 ,r. 

Naturally, in the general case, systems of the form (1.1) do not possess that number of first integrals 
which enable them to be represented in the form (1.2). Nevertheless, even in this case it is possible to 
draw certain conclusions regarding the structure of system (1.1). Thus, for example, when y1 = 3 the 
following assertion holds. 

Assertion 1. If system (1.1) possesses at least one differentiable first integral J = J(x) or, in other 
words, the following relation is satisfied 

(aJ/ax,f(x)) = 0 W 

then system (1.1) can be represented in the form 

t = a(x)e(x) + p(x)e(x) x&x), g = a.uax W9 

where e(x) is an arbitrary three-dimensional vector, orthogonal to the vector g. 
In particular, if (gi -g&&z -g&s -gi) # 0, we can chose the vector e = (gs -g2, gl -g3, g2 - gi) as 

this vector. In this case 

(exg), = g,(g, -g3)-g2(g2-g,) (123) 

If J f J(x: + X; + xi) in a certain region %, we can choose 

e = xxg(x) 

as this vector in this region. 

(1.7) 

(14 

Proof. We will consider relation (1.5) as an equation in the components of the vector E for a fixed 
value of x. If J, = {z: J(z) = c} is the level of the first integral, containing the point x, the linear 
homogeneous equation (1.5) defines a set of vectors, collinear with the plane which touches the surface 
J, at the point x. Then, by the properties of a mixed product, if a certain non-zero vector vector g and 
e x g define a general two-parameter solution of Eq. (1.5) having the form 

f(x) = a(x)e(x) f Kx)e(x> x g(x) (1.9) 

whence the correctness of the first proposition follows. 
The proof of the second and third propositions is based on the fact that for any vector h(x), not 

collinear with the vector g(x), the vector h x g is orthogonal to both of them and is collinear with this 
plane. In the second proposition the vector h is constant and has the form h = (1, 1, l), and in the third 
proposition h = (x1, x2, .x3). 

In the last case if p(x) = 0, after changing the time do = a(x)&, Eqs (1.6) become Euler’s equations 
(the prime denotes a derivative with respect to z) 

x’ = xxg (1.10) 

which possess the well-known Poisson structure. 
The existence of two independent first integrals J1 and J2 in the case when y1 = 3 enables us, in view 

of Jacobi’s theorem, to represent Eqs (1.1) in the form 

x = a(x)(aJ,lax> X (a&&x> (LPI) 

and to represent Eqs (1.3) in the form 

~1 = (a.qax) x (aqax) (1.12) 

These equations, in particular, describe the motions of an Euler top for J1 = (x, x)/2 and of a balanced 
gyrostat for J1 = (x + c, x + c)/2. 

Assertion 2. Suppose one of the integrals of Eqs (1.12), say, integral J1, is quadratic and has the form 

J, = 1/2(Bx, x), B = (1.13) 
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where the matrix B is positive definite. Then, a non-degenerate linear homogeneous change of variables 
exists, which, in combination with the time change, reduces Eqs (1.12) to the form of Euler’s equations 
(1.10). 

Proo$ Since the matrix B is positive definite, a matrix C exists such that B = C2, where the determinant 
of the matrix C is non-zero. Then, the change of the variables 

x* = cx (1.14) 

reduces the integrals J1 and J2 to the form 

Jr = (x*,x*), jr* = J&x) 

By Jacobi’s theorem, in the new variables, Eqs (1.3) can be represented in the form 

(1.15) 

t* = c~*(~*)x* x amax* (1.16) 

Changing the time and dropping the asterisks we finally obtain Euler’s equations in the form (1.10). 
Note that the matrix C is not uniquely defined. 
For systems with quadratic definite defined first integral, relation (1.14) gives a global change of 

variables, which enables system (1.11) to be reduced to Euler’s equations. If, in general, we drop the 
globality condition, the assertion proved can be strengthened considerably. 

Assertion 3. Suppose one of the integrals of Eqs (1.12), say, integral J1, reaches a strict minimum 
(maximum) at the point x0, and the determinant of the Hesse matrix of the function J1 at the point x0 
is non-zero. We then obtain and open and region Q, containing the point x0, such that Eqs (1.12) appear 
in the form of Euler’s equations (1.10) in a certain system of coordinates after an appropriate time 
change. 

P~oofi By Morse’s lemma ([12], see also [13, Chapter 61) in a certain neighbourhood of the non- 
degenerate minimum (maximum) of the function J1 we can choose coordinates such that in them 
_F1 = - (x: + X; + ~$2 (correspondinglyJ1 = - (XT + xi + x$)/2), in which case the proof of the assertion 
reduces to using Jacobi’s theorem and changing the time. 

Remark. Morse’s lemma also enables the system to be converted to a ce,rtain similar canonical form in the 
neighbourhood of non-degenerate saddle points. However, the equations obtained are not encountered in applica- 
tions as often as systems of Euler’s equations. Besides, such “diversity of cases” is easily removed by considering 
equations in the set of complex numbers. 

2. LINEAR SYSTEMS WHICH POSSESS FIRST INTEGRALS 

We will now assume that system (1.1) is linear and has the form 

i = Ax, XE R3, A = const (2.1) 

Suppose the determinant of matrix A is equal to zero. Then, both the determinant of the transposed 
matrix AT and one of its eigenvalues are also equal to zero. We will denote the eigenvector of the matrix 
AT, corresponding to this zero eigenvalue, by g = (gl, g2, g3). 

Assertion 4. If detA = 0, system (2.1) can be represented in the form 

t = axxg+p(xxg)xg, a,/3 = const 

Proo$ It is well known that, under the conditions of the theorem, the function 

J = (g, x) 

is the first of Eqs (2.1): differentiating this function we have, by virtue of system (2.1) 

d(g, x)ldt = (g, Ax) = (ATg, x) = 0 

(2.2) 

(2.3) 
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Then, the conditions of Assertion 1 are satisfied and Eqs (2.1) can be represented in the form (1.6). 
To complete the proof it remains to note that the factor a and p are constant, by virtue of the linearity 
of system (2.1). 

Since g is a constant eigenvector of the constant matrix A, we will assume, without loss of generality, 
that a = 1. 

If fi = 0, system (2.2) is a system of Euler’s equations of the form (1.10) with Hamilton function (2.3). 
Following the formulation of the problem, proposed previously in [2], we will now consider the case 

when Eqs (2.1) allow of a quadratic first integral of the form (1.13), where detB f 0. 

Assertion 5. If system (2.1) possesses a non-degenerate quadratic integral (1.13), then detA = 0 and 
system (2.1) can be represented in the form 

t = gxBx 

where g is constant eigenvector of the matrix AT, corresponding to its zero eigenvalue. 

(2.4) 

Proof. Since (1.13) is a first integral, the equality 

(Bx, Ax) = (ATBx, x) = 0 

is satisfied identically. The matrix ArB is then skew-symmetric, and its determinant is equal to zero, 
since the dimension of the matrix is odd. But the matrix B is non-degenerate and detB # 0. So, 
detA = 0 and detAr = 0. Then, in view of the property of the corresponding zero eigenvalue of the 
eigenvector of the matrix AT mentioned above, the function of the form (2.3) is a first integral of Eqs 
(2.1). Consequently, by virtue of Jacobi’s theorem, the equations can be represented in the form (1.12). 
In this case, since the equations are linear, the time change turns out to be unnecessary - it can be 
compensated by choosing the eigenvector g, defined, as we know, apart from a factor. 

Note that we can give the search for the vector g a “more constructive form”. Since the matrix B is 
non-degenerate, an inverse matrix B-i exists by means of which we can represent Eqs (2.1) as 

t = Ax = (AB-‘)Bx 

The matrix AB-l is skew-symmetric, since for any vector z we have (compare [2]) 

(AB-‘z, z) = (Ax, Bx) = 0 (x = B-‘z) 

Then the correspondence between the components of this matrix and the components of the vector g 
is established using the known isomorphism between 3 x 3 skew-symmetric matrices and three-dimensional 
vectors, having the form 

g, = (AB-$3 (123) 

Assertion 6. Under the conditions of Assertion 5 suppose a symmetric matrix C exists such that 

B2 = c (2.5) 
Then, by the linear change of variables 

x1 = Cx (2.6) 

Eqs (2.1) can be reduced to a system of Euler’s equations of the form (1.10). 

Proof Since detB # 0, we have detC # 0, and the inverse matrix C-l exist. By the change of variables 
(2.6) Eqs (2.1) and integral (1.13) can be reduced to the form 

and 

t* = C-‘ACx” = A*x* (2.7) 

J = (x*,X*) (2-S) 

respectively. 
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The function (2.8) is a first integral of Eqs (2.7). Discussions similar to those above show that the 
matrix A* is skew-symmetric. Then, assuming 

g;” = -cA*)~~ (123) 

and dropping the asterisks everywhere ,within this assertion, we can represent Eqs (2.1) in the form of 
Euler’s equations 

aJ x = xxg = xx- 
ax (2.9) 

with Ilamilton function 

J = (g, x) (2.10) 

These results to a certain extent supplement the results obtained previously in [2]. 

3. SOME EQUATIONS WHICH ARISE IN RIGID BODY MECHANICS 

When investigating a number of mechanical systems, the equations of motion can be represented in 
the the form 

l%i = Mxg+P+Q, + = yxg+xMx$ M,~E R3, K = O,+l (3.1) 

Consider system (3.1) when 

P = YxaHlay, Q = 0 (3.2) 

Equations arise in particular when x = 0 in the problem of the motion of a rigid body around a fixed 
point in an axisymmetrical force field, and in the problem of the motion of a rigid body in an ideal 
incompressible fluid; when 3c = 1 they arise in the problem of the motion of a rigid body with an 
ellipsoidal cavity filled with an ideal liquid performing uniform vertical motion; when x = -1 they arise 
in the problem of the motion of a rigid body along the surface of constant negative curvature. 

If the Hamilton function W is explicitly independent of time, it will be a first integral of the equations 
of motion. Moreover, the functions 

J, = (My), J, = W(y,y)+WWM)) 

are first integrals of system (3.1), (3.2), which the Hamilton function H would not be. 
The following assertion, the proof of which consists of a direct check, holds. 

(3.3) 

Assertion 7. System of equations (3.1), (3.2) can be represented in the form 

Ri aJlxaH+aJ,xa~ . aJ, aH aJl aH 
= T$ aM aM af y= ZiiXaM+K;~X~ (3.4) 

The limitation of system (3.1), (3.2) to a non-singular combined level of integrals Ji and J2 can be 
described by a canonical system of Hamilton equations with two degrees of freedom. 

We will now consider system of equations (3.1) when 

P=O, Q=Q(M,y) (3.5) 

where the generalized moment Q is a certain fairly continuous functions of its arguments. 

Assertion 8. If system (3.1), (3.5) allows of first integrals HandJi, it first subsystem can be represented 
in the form 

aH aH hi = (M+ay)xz+yxF, a = a(M,y) (3.6) 
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Proof. Since the functions H and 3i are first integrals, the components of the vector Q satisfy the 
relations 

or 

(g,Q*) = 0, (y, Q”) = 0, 

P-7) 

(3.8) 

Then, by virtue of relations (3.7), Q* = ayx SUaM, which, taking the last relation of (3.8) into account, 
proves the required result. 

When 3~ = 0 and a = 0 Eqs (3.1) and (3.5) are the Euler-Poisson equations. This relation between 
the existence of an integral of the energy-integral type and the presence in the system or a Poisson 
structure was investigated previously in [3]. We will present the corresponding results as an example. 

Example 1. The motion of a body with a jked point in a $0~ of particles. Consider the motion of a 
rigid body about a fixed point G under the action of a uniform flow of particles, directed along the unit 
vector y = (yl, y., y3), fixed in absolute space. We will assume that the particles collide absolutely elastically 
with the body, p is the density of the particle flux, I/ is the flow velocity, S(y) is the mid-section area of 
the body (i.e. the area of the projection of the body onto the plane perpendicular to the flow), and 
c = (cl, c2, cs) is the vector connecting the fixed point with an arbitrary point of the straight line collinear 
with the vector y and passing through the centroid of the mid-section of the body Y(y). The vector c 
in general depends on y. If I is the inertia tensor of the body with respect to the fixed point and 
or) = (or, cuz, 0s) is the vector of the angular velocity of the body, then, when the flow velocity considerably 
greater than the linear velocities of points of the body, the equations of motion have the form [3] 

IO = Iwxo+fyxc(y)s(y), r = yxo, f = pv2 (3.9) 

It was pointed out in 131 that if a function Ii = U(y) exist such that 

C(Y)S(Y) = auiay (3.10) 

Eqs (3.9) are the Poincare-Chetayev equations. However, in general, condition (3.10) does not occur. 
Thus, for a body bounded by an ellipsoidal with semi-axes bI, b2, and b3? collinear with the axes of the 
system of coordinates connected with the body, the mid-section area S is given by the relation 

S(Y) = nb,b,b,(y:lb; + y;lb; -+ y;lb:)“2 (3.11) 

We can take as the vector c, as in any other case, when the body surface is centrally symmetric, the 
vector connecting the fixed point and the centre of the ellipsoidal surface. This vector is constant in 
the system of coordinates connected with the body, in view of which condition (3.10) when all the semi- 
axes b, are different, turns out to be unsatisfied. Nevertheless, if the body is bounded by a surface of 
revolution with axis passing through the fixed point, where bI = b2 = b and c = (0, 0, cs), then, by virtue 
of the fact that the relation $ f 2 + $ = 1 is satisfied, the potential U exists and be written in the 
form of an elliptic quadrature 

U(y3) = nbb,c,j 1 + :‘( bZ2b’.‘!‘i’du (3.12) 

If the tensor I = (Ii, I,, 1,) is symmetric and Pi = I,, the equations of motion allow of an additional 
integral Js = 1st~~ and turns out to be completely integrable. 

As is well known to integrate Eqs (3.1) and (3.2) one first integral is missing in the general case. 
Classical cases of the existence of such a first integral (see, for example, [4]), and also the case recently 
obtained in [14], are well known in mechanics. 

Consider system (3.1) when 

P = yxJHlay, Q#O (3.13) 
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It is asked, for what conditions, imposed on the components of theve,ctor Q, will Eqs (3.1) and (3.13) 
retain the additional integral? 

Suppose, for example, that the additional integral has the form 

J, = 1/2(M, Ml + u(y) 

as occurs, say, in the Clebsch case. 

(3.14) 

Assertion 9. If, in addition to integralJr, Eqs (3.1) and (3.13) allow of an integral of the form (3.14), 
then 

Q - aMxy, a = a(M,y) (3.15) 

Proof. DifferentiatingJ1 andJs we have, by virtue of system (3.1) (3,13) 

(MQ)=O, (y,Q)=O (3.16) 

whence we also obtain relation (3.15). It is interesting to note that if the generalized moment Q has 
the form (3.15) Eqs (3.14) also allow of integral &. 

Example 2. The motion of a body with a fixed point in a magnetic field. The problem of the motion 
of a rigid body in a constant uniform magnetic field of strength y, on the assumption that the body is 
made of a material which becomes magnetized on rotation (the Barnett-London effect), was considered 
in [4] and also in [15, 161. If we neglect the de Haas-Einstein effect which dual to Barnett-London 
effect and consists of the fact that, on magnetization, a body of such a material begins to rotate, then 
according to the papers mentioned above, the equations of motion can be represented in the form 

Iii = MxI-~M+AMx~, i = yxI-‘M 

Tben, if A = CXE, where a = const, these equations belong to the class of Eqs (3.14) and (3.15). 

4. THE HAMILTONIAN STRUCTURE OF LINEAR 
DIFFERENTIAL EQUATIONS 

The question of the Hamiltonian structure of linear ordinary differential equations, which allow of a 
quadratic first integral, was investigated in [2]. As is well known, linear differential equations can always 
be integrated in explicit form, but in general the first integrals are rational. It turns out that in a number 
of cases one can make a non-linear change of variables which preserves the linearity of the differential 
equations and reduces the corresponding integrals to quadratic form. 

We will consider the simplest example. Suppose 

i, = %x1, i, = %X2 (4.1) 

These equations are completely integrable, and they allow of two non-autonomous first integrals 

-?Q 
F,(.q) = e Xi, i = 1,2 

from which we can construct one first integral, explicitly independent of time, having the form 

F = x;/x;’ 

in the region % = {x: x1 > 0, x2 > O}; the remaining regions are considered similarly. 
In the region 2 we make the change of variables 

xi = x;, i = 1,2 

which only has singularities on the boundary of the region %. Then 

2. - P.X+-’ ’ I - I 1 xi = (pihi)Xi, i = 1,2 

(4.2) 

(4.3) 
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Assuming 

we can reduce the equations of motion to the form 

it1 = x, = MIiJX,, x2 = -x, = -amx,, H(X,, X,) = x,x, 

We will consider the system 

il = hx, +x2, i, = Ax, (4.4) 

As is well known, the general solution of this system has the form 

X, = (C,ri- Cl)& x2 = G$ 

whence the time-independent first integral can be written as 

Then, by the change of variables 

F = hx2e 
-hx,lx, 

x, = e-kxl’x~, x, = A-* 

Eqs (4.4) can be reduced to the form 

2, = kX, = g, 
2 

x2 = AX, = -g, H -‘ 1X,X, 
I 

Hence, if the linear system in canonical form is formed by two-dimensional blocks of the form (4.1) 
or (4.4), the changes described above lead to a Hamiltonian form everywhere with the exception of the 
coordinate axes. 

This research was supported by the Russian Foundation for Basic Research (00-15-96150, Ol-Ol- 
02001) the Federal Special-Purpose “Integration” Programme, the National Science Foundation, and 
the Centre (CERMICS ENPC). 

REFERENCES 

1. JACOBI, K. Vorlesungen iiber Dynamik. Reimer, Berlin, 1884. 
2. KOZLOV, V A., Linear systems with a quadratic integral. Prikl. Mm. Mekh., 1992,56, 6, 900-906. 
3. BUROV, A. A. and KARAPETYAN, A. V, The motion of a body in a flow of particles. Prikl. Mat. Mekh., 1993,57,2,77-81. 
4. KOZLOV V V:, Symmetry Topology and Resonances in Hamiltonian Mechanics. Izd. Udmurt. Univ., Izhevsk, 1995. 
5. BLANKENSTEIN, G. and VAN DER SCHAFT, A. J., Symmetry and reduction in implicit generalized Hamiltonian systems. 

Rep. Math. Phys., 2001,47, 57-100. 
6. VAN DER SCHAFT, A. J. and MASCHKE, B. M., Interconnected mechanicai systems, Pt 1. Geometry of interconnection 

and implicit Hamiltonian systems. Proc. Workshop Modelling and Control of Mechanical System. Imperial College, London, 
1997,1-15. 

7. BLANKENSTEIN, G. and VAN DER SCHAFT A. J., Symmetry and Reduction in Implicit Generalized Hamiltonian Systems. 
Memorandum 1489, University of Twente, Faculty of Math. Sci. Twente, 1999. 

8. BLANKENSTEIN, G. and VAN DER SCHAFT, A. J., Reduction of implicit Hamiltonian systems with symmetry. Proc. 5th 
Europ. Control Conf: ECS’99. Karlsruhe, 1999. 

9. DALSMO, M. and VAN DER SCHAFT, A., On representations and integrability of mathematical structures in energy- 
conserving physical system. SlAM.Zoumal Con.? Optimiz. 1999, 37, 1, 54-91. 

10. DE LA VALLEE POUSSIN, Ch.-J., Cours diAnatjw Znjinitesimale. Librarie Univ. Louvain, Gauthier-Villars, Paris, 1925. 
11. GALIULLIN, A. S., GAEAROV G. G., MALAISHKA, RX et al., Analytical Dynamics of Helmholtz, Birkhoff and Nambu 

Systems. Redaktsiya Zhurnala “Usp. Fiz. Nauk”, Moscow, 1997. 
12. MORSE, M., Relations between the critical points of a real function of It independent variables. Trans. Am. Math. Sot., 1925, 

27,3,345-396. 
13. HIRSH, M.W., Differential Topology. Springer, New York, 1976. 
14. SOKOLOV, V V, A new integrable case for Kirchhoff’s equations. Tear: Mat. I%., 2001,129, 1,31-37. 
15. SAMSONOV V A.,The rotation of a body in a magnetic field. Izv. Akud. Nauk SSSR. MTT, 1984,4,32-34. 
16. KOZLOV, V V, The problem of the rotation of a rigid body in a magnetic field. IN. Akad. Nauk SSSR. MTT, 1985,6,28-33. 

Fanslated by R.C.G. 


